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Abstract

This article studies the role of employer network structures in shaping labor market out-

comes through a simple search model. In this model, employers are depicted as nodes

within a network, linked by edges that signify higher arrival rates of job offers. We proved

the existence and uniqueness of what we term the ‘node value’ — the expected lifetime

value derived from leveraging an employer’s network connections for job search. We es-

tablish that the node value is essentially an option asset in that its value escalates with the

first order stochastic dominance of the wage distribution and its mean-preserving spreads

in risk. Moreover, node value exhibits similarity to network centrality measures as it de-

pends on employer’s position within the network. Specifically, it is positively related to

the number of connections an employer maintains and the node values of other employers,

especially the connected ones. Consequently, employers situated in more central positions

within the network are deemed more desirable, offering better working prospects to work-

ers. The node value thus serves as a crucial mechanism by which the employer network

structure endogenously determines employment, labor mobility, and wage distributions.

Furthermore, the model offers explanatory power for phenomena such as worker mobility

towards lower-wage jobs. Our analysis highlights the critical role of network topology in

driving employment decisions and molding labor market outcomes.
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1 Introduction

Since Stigler (1961)’s fundational work, search model has become a cornerstone in the

economic analysis of wage dynamics, employment, and labor mobility.1 Rogerson, Shimer, and

Wright (2005) emphasized that search models significantly advance our understanding of the

labor market. However, traditional literature often assumes that employers are homogeneous

to workers in providing career prospects, a presumption increasingly challenged by empirical

evidence. Notably, Cardoza et al. (2022) observed that approximately 20% of transition are

between buyer and supplier in the Dominican Republic. Komatsu (2023) documented that

over 40% of job-to-job movements in Belgium occur within such production networks. This

variation suggests that the network positions of employers and the network structure might

play critical roles in shaping labor market dynamics. Therefore, this study seeks to unravel the

impact of an employer’s network position and the network topology on labor market outcomes.

This research marries the seminal search model by McCall (1970) with an employer net-

work to investigate labor market dynamics. In particular, We conceptualize the employer net-

work as a graph where nodes represent employers, interconnected by edges that signify poten-

tial employment links. This model envisages employers as islands, creating an environment

where employed individuals receive wages and unemployed individuals await job offers from

other islands. The offer arrival rate between two employers is contingent upon the existence of

connections between employers, with a higher offer arrival rate observed when a connection is

present. Contrasting with the island model by Lucas Jr and Prescott (1974), our methodology

abstracts from the specifics of employer production processes and the influence of worker ex-

ternalities on wage determination. This strategic abstraction allows the study to zero in on the

implications of an employer’s network position and the broader network architecture.

Within this framework, the network position of an employer confers a distinct expected

value for future employment opportunities associated with that employer, a concept we term

as ‘node value’. This node value emerges as a cornerstone of our model, encapsulating three

key uncertainties faced by workers: the number of offers received, the employers behind the

received offers, and the wage associated with each offer. Consequently, the network’s structure,

or topology, significantly influences labor market dynamics. It does so by affecting the node

values assigned to each employer, which in turn impacts critical outcomes like wage distribu-

1To name a few, sequential search by McCall (1970) and Mortensen (1970), random search by Pissarides

(1985), and directed search by Moen (1997).
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tion and overall employment levels.

In analyzing the influence of employer network, it is crucial to first understand the con-

cept of node values, as they not only reflect employers’ positions within the network but also

guide workers’ decision-making processes. To this end, we firstly demonstrate the existence

of a unique node value for each employer within any given network structure. This assertion

underscores the feasibility of conducting numerical analyses using an adjacency matrix to rep-

resent the employer network. Secondly, we draw parallels between node values and option

assets. Specifically, we argue that either the first order stochastic dominance of wage distribu-

tion, or its transformation into a mean-preserving spread, augments an employer’s node value.

Moreover, we posit that node values bear a resemblance to several network centrality measures

and the intercentrality measure in a network game analyzed by Ballester, Calvó-Armengol, and

Zenou (2006), highlighting the significance of an employer’s number of connections and the

node values of the connected employers as key determinants.2 We prove that an employer’s

node value escalates with an increase in both the degree of connectivity and the node values of

other employers, especially the connected ones.

Our model introduces a paradigm shift from conventional search models by incorporating

node values, which differentiates it in two fundamental aspects. First, upon receiving job offers,

workers evaluate these opportunities based on ‘reservation values’ as opposed to the ‘reserva-

tion wage’ in McCall (1970). This reservation value extends beyond mere wage considerations

to include the network position of the prospective employer. Consequently, employers situ-

ated at central nodes within the network command greater appeal due to their potential to offer

superior future prospects, manifesting as higher node values.

The model, therefore, seeks to explain the worker mobility towards jobs with wages that

are below either their stated reservation wage or their wages from previous employers3. Con-

trary to previous interpretations that attribute such mobility to non-wage compensation pro-

vided by employers (Hall and Mueller (2018), Sorkin (2018)), this paper proposes an alternative

perspective. It posits that the evaluation of wages, when considered alongside the trade-off be-

tween spot wage and anticipated future wages, remains a pertinent framework for understand-

2In network science, ‘Degree’ refers to the number of connection of one node in an undirected network, and

‘indegree(outdegree)’ in directed network. ‘Neighbors’ indicates connected nodes.
3Hall and Mueller (2018) find that unemployed workers sometimes accept offers with wages below their

previously stated reservation wages. Sorkin (2018) documents that declining earnings upon transitions are an

important feature in U.S. labor market.
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ing these employment transitions. In this context, the sequential auction model of Postel-Vinay

and Robin (2002), which links mobility involving a wage reduction to prospective wage growth

within the employer, serves as a foundational reference. Our model nevertheless emphasizes

the role of employers’ network connections in offering future income prospects.

The second divergence of our model from existing labor market search models lies in

its treatment of employer network structures that directly determines labor market outcomes,

including observed wage distribution, labor mobility, and employment. Specifically, our model

posits that employers occupying central positions within network structures facilitate greater

labor mobility.

Furthermore, our analysis extends to the impact of structural changes within the employer

network — such as variations in the number of nodes (employers), edges (connections between

employers), and overall network topology — on labor market outcomes. The model shows

how shocks to the network’s structure, termed network structural shocks, affect these outcomes

by altering the node values assigned to each node (employer) within the network. Specifically,

adding a new edge in a network would weakly increase all node values in the network, while

the effect of an additional node on node values is contingent upon the specific topology of the

network. This complexity is further magnified when considering wage distributions, as the

network’s restructuring influences labor flows among employers in an endogenous manner.

Literature Review: This paper revisits a large literature that incorporates network factors with

job search. After the seminal work by Montgomery (1991) and Calvo-Armengol and Jackson

(2004), many researchers have delved into the relation between job search and the network on

worker side – social network. Studies such as those by Fontaine (2007), Bayer, Ross, and Topa

(2008), Fontaine (2008), Cahuc and Fontaine (2009) and Barwick et al. (2019), underscore the

significance of social networks in the labor market.4 Social networks are empirically docu-

mented to facilitate search and matching for workers through referrals (See, e.g. Dustmann

et al. (2016), Lester, Rivers, and Topa (2021)) and information passing (e.g. Glitz (2017) Ar-

bex, O’Dea, and Wiczer (2019) , Caldwell and Harmon (2019), and Carrillo-Tudela, Kaas, and

Lochner (2023)). Although this paper acknowledge the significant effect of social network on

labor market, we diverge by focusing on the connections and topology of employer network.

Unlike the contagious effect in Calvo-Armengol and Jackson (2004), workers are homogeneous

and their behaviors in our model do not affect other workers through the employer network.

4Jackson (2006) provide a complete survey of the theory on the economics of networks at that time.
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In addition to our study, recent literature, including Cardoza et al. (2022) and Komatsu

(2023), highlights the impact of employer networks on labor market dynamics. Haltiwanger

et al. (2018) documented that worker transitions between employers significantly contribute to

overall labor mobility in frictional labor markets. This phenomenon translates firm connec-

tions into a complex network, as explored by Huitfeldt et al. (2023). Unlike previous studies

that focus on the input-output relationships or firm-to-firm transactions, our approach abstracts

the employer network by considering heterogeneous offer arrival rates determined by an em-

ployer’s network position. We contribute to the existing theory by examining how the structure

of the employer network influences worker decisions and eventual outcomes in labor market.

The remainder of this paper is organized as follows: Section 2 introduces the model,

and elucidates the pivotal elements that bridge network structure with worker decision-making

processes. Section 3 employs numerical analyses to investigate the model’s steady states and

assesses the impact of structural changes within the network on this equilibrium. Section 4

explores how variations in network structure influence wage distribution and labor mobility.

Section 5 concludes.

2 Model

2.1 Environment

Agents: The economy has N employers and a pool of homogeneous workers. We assume

that the entry rate equals to the exit (mortality) rate of labor force, so the pool of workers is

stable. To isolate the network structure’s effects, this model abstracts away from the diverse

characteristics of employers, focusing solely on their positions within the network to study the

network’s impact on employment dynamics. That is, employers are differentiated exclusively

by their network positions.

Following McCall (1970), we assume workers are rational and risk-neutral, aiming to

maximize the expected present value of their lifetime income, represented as:

Et

∞

∑
τ=0

[β (1−d)]τyt+τ ,

where β denotes the discounting rate, d is the labor force exit rate (or mortality risk), yt is

the income at time t. The model posits that income is contingent upon employment status -

a constant γ for the unemployed, and a variable wage wi for those employed by employer i,
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Figure 1: Decision timeline

which is independently drawn from a non-degenerate distribution F(x) and w ∈ [0,B].5 The

wage from employer i remains unchanged after the offer is accepted.

Timing of Actions: As shown in Figure 1, at the beginning of each period, workers are compen-

sated with w or γ , contingent on their employment state. New workers entering the job market

are unemployed. But a(n) decreasing(increasing) population would not change the results of

this paper. Apart from a mortality risk, every worker faces an exogenous separation risk, ψ . If

alive and not separated, a worker in employer i decides whether to quit and enter job market

immediately.6 Then unemployed workers in the job market may receive offers from other em-

ployers except her previous one.7 After accepting one of the arrived offer(s), she will move to

the employer with no commuting cost and start working next period.

Network Setups: Employer network is characterized by a graph G(Nv,E), which is captured by

an adjacency matrix A = [ai j]N×N , where ai j = 1 if there is a direct link between employers i

5F(x) satisfies F(x) = Prob(w≤ x), with F(w) = 0, F(B) = 1, and its pdf. f (w)> 0 for ∀w ∈ [w,B].
6This model abstracts from on-the-job search that is prevalent in many search models (e.g. Pissarides (1994),

Burdett and Mortensen (1998)) for two reasons. First, we aim to study the role of employer network position in

workers’ decisions. Adding on-the-job search for workers would have marginal benefit for this purpose but mix

the workers who flow in for network connections and for higher wages. Second, the framework still accommo-

dates job-to-job transitions observable within the discrete time setup, facilitating an examination of how network

structures influence worker mobility.
7The assumption of recalling from the previous employer would not affect the main results.
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and j, and 0 otherwise.8

The model introduces three foundational assumptions that facilitate a understanding of

how network structure influences labor market, emphasizing the role of network positions in

shaping job offer probabilities and employment decisions:

1. Offer Arrival Rate: Workers separated from employer i may receive an offer from em-

ployer j(6= i), with the probability δi j influenced by the network connectivity between

the two employers. This probability varies, indicating that a worker’s network position

significantly impacts their job prospects. For voluntarily separated workers (movers),

δi j =

δL ∈ [0,1) if ai j = 0

δH ∈ (δL,1] if ai j = 1
,

For workers involuntarily separated from their previous employers,

δi j =

δL ∈ [0,1) if ai j = 0

δm = mδH +(1−m)δL ∈ (δL,1] if ai j = 1
,

where m ∈ [0,1] is network memory strength.

2. Network Utilization in Job Search: Workers can leverage their former employer’s net-

work connections for job searching until they accept a new offer, underscoring the lasting

impact of previous employment on current job search efforts.

3. Limited Network Memory: Workers do not recall employers beyond their most recent

one and thus cannot leverage previous employers’ network connections.

Remarks: (1) The first assumption illustrates the mapping from employer network graph onto

heterogeneous arrival rate of offers. If involuntarily separated, the network connections are

weaker unless m = 1. If m = 0, employed workers have no incentive to quit their jobs. (2) The

second assumption implies that a worker may receive an offer from the same employer that

she previously rejected. This is because we make employers only differ in their the network

positions. In practice, workers are likely to receive an offer from another employer that share

8Nv = {1, . . . , i, . . . ,N} is the set of nodes ( employers), and E is the set of edges between two nodes. This

paper focuses on unweighted and undirected network structure, but we can easily extend to weighted directed

network without hurting the main results of the paper.
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similar features with the one they previously rejected. This assumption streamlines the station-

ary value about network positions that we will discuss later. (3) The Markov-like assumption

simplifies the computation and can be extended with a state of history.

Workers States and Transitions: As in Figure 2, each period begins with workers positioned at

various nodes (representing employers), where they may assume one of three distinct statuses:

‘settler’, ‘mover’, or ‘unemployed’. Notably, new workers (‘inexperienced’) in the labor mar-

ket lack prior employment experience and, as such, are assumed to search from a hypothetical

employer node ‘zero’, devoid of any network connections. Consequently, given N employers

within the economic framework, the model identifies a total of 3N+1 unique worker states per

period. The decision to remain within an employer or to resign is predicated on a comparison

between the current wage and the expected value attributed to the employer’s network position.

A ‘settler’ remains indefinitely with a single employer, whereas a ‘mover’ opts to resign after

a solitary period of employment in pursuit of new opportunities, leveraging the network con-

nections of the previous employer.9 Transitions between states are visually represented in the

figure: solid arrows signify the immediate subsequent state transitions, while dashed arrows

indicate potential transitions. On contrary, newly born workers are free to transition to any

employer node, as highlighted by the red dashed arrows.

Figure 2: Workers’ states and flows

9As will be explained later, given the employment status, the policy rule is time-invariant because the network

structure and wage distribution are fixed.
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2.2 Value Functions

The search has stationary values over time, capturing the interplay between wages, em-

ployment status, and network positions. The value function for employed workers at employer

i each period is:

V (i,wi) = max{wi +β (1−d)[(1−ψ)V (i,wi)+ψΛi],Ωi} , (1)

The first term on the right is the value if the worker stays, capturing the expected value of

involuntary separation, Λi. The second term, Ωi, is the expected value if she voluntarily quits.

These expected values, tied to the employer’s network position, are thus termed the ‘strong

node value’ (Ωi) and ‘weak node value’ (Λi).

The values for unemployed workers rely on their particular network connections. Denote

UΩ(i) (UΛ(i)) as the value for voluntarily (involuntarily) separated workers, then

UΩ(i) = max{γ +β (1−d)Ωi, wi′+β (1−d)V
(
i′,wi′

)
, · · ·
}︸ ︷︷ ︸

|Ci| offers

, (2)

UΛ(i) = max{γ +β (1−d)Λi, wi′+β (1−d)V
(
i′,wi′

)
, · · ·
}︸ ︷︷ ︸

|C ′i | offers

, (3)

where Ci (C ′i ) is the sets of arrived job offers for the voluntarily (involuntarily) unemployed.

Should no offers be received, or all received offers are declined, the resulting values default

to γ + β (1− d)Ωi for voluntarily unemployed workers, and γ + β (1− d)Λi for involuntarily

unemployed workers.

Let U0 be the value for inexperienced workers, including new workers and the workers

who have never worked after the entry.

U0 = max{γ +β (1−d)Λ0, wi′+β (1−d)V
(
i′,wi′

)
, · · ·
}︸ ︷︷ ︸

|C | offers

. (4)

where C is the sets of arrived job offers. Equation 4 caters to newly entered workers in the

job market, attributing their expected unemployed value to γ + β (1− d)Λ0, as they have no

network connection from employers.

2.3 Threshold Wage and Reservation Value

A notable implication from the value functions above is the introduction of a ‘threshold

wage’, ηi, for employer i, beyond which workers opt to stay (settlers) or leave (movers). This
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threshold wage, defined as:

ηi = [1−β (1−d)(1−ψ)]Ωi−β (1−d)ψΛi, (5)

is demonstrably positive, ensuring a decision-making framework that deviates from conven-

tional models by considering both the wage and the employer’s network position in the job

acceptance process.10

Moreover, the model transitions from focusing on a ‘reservation wage’ to a ‘reservation

value’, V̄i. This reservation value for unemployed workers, separated from employer i, is delin-

eated as:

V̄i =


γ +β (1−d)Λ0, for inexperienced workers

γ +β (1−d)Ωi, for voluntarily separated workers

γ +β (1−d)Λi, , for involuntarily separated workers

. (6)

Importantly, the reservation value allows for a scenario where workers may accept offers with

wages lower than their reservation wages, or switch employers with declining wages, should

the network position of the prospective employer justify such a decision. For instance, consider

an unemployed worker separated from employer i who received 2 offers each from employer j

and employer j′. The worker will be working next period if and only if the following holds:

max
{(

w j +β (1−d)V ( j,w j)−V̄i
)
,
(
w j +β (1−d)V ( j,w j)−V̄i

)}
> 0,

and reservation wage plays no role in worker’s decision.

Furthermore, a worker can reject an offer from employer j′ and go to employer j if

w j +β (1−d)V ( j,w j)> w j′+β (1−d)V ( j′,w j′).

In this case, even if w j′ > w j, but w j′−w j < β (1−d)
[
V ( j,w j)−V ( j′,w j′)

]
, the superficially

better offer from j′ might not be preferable as employer j can provide a significantly advan-

tageous network position for future searching. The network position can render the expected

value sufficiently high to surpass the immediate wage difference, leading to the worker’s deci-

sion to decline the offer from j′ in favor of transitioning from employer i to j. These conditions
10Since

f (ψ) ∈ [0,β (1−d)], f ′(ψ)> 0, f ′′ < 0

and Ωi ≥ Λi by definition,

Ωi >
β (1−d)ψ

1−β (1−d)(1−ψ)
Λi = f (ψ)Λi,

so ηi > 0.
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articulate the necessary and sufficient criteria that explain scenarios where workers may favor

offers with lower wages, or switch employers despite a wage reduction.

2.4 Node Values and Their Properties

Node values serve as a pivotal link between workers’ decisions and the network structure

of employers. Specifically, they encapsulate three key uncertainties faced by workers: the

number of offers received, the employers behind the received offers, and the wage associated

with each offer. These uncertainties are reflected by both strong and weak node values as below

Ωi = pi(0) [γ +β (1−d)Ωi]+

N−1

∑
n=1

(N−1
n )

∑
k=1

pi(k | n)max
{

γ +β (1−d)Ωi,
∫ B

0

[
wi′+β (1−d)V

(
i′,wi′

)]
dF (wi′) , · · ·︸ ︷︷ ︸

n offers arrived

}
,

(7)

Λi = p′i(0) [γ +β (1−d)Λi]+

N−1

∑
n=1

(N−1
n )

∑
k=1

p′i(k | n)max
{

γ +β (1−d)Λi,
∫ B

0

[
wi′+β (1−d)V

(
i′,wi′

)]
dF (wi′) , · · ·︸ ︷︷ ︸

n offers arrived

}
,

(8)

Here
∫ B

0 [wi′+β (1−d)V (i′,wi′)]dF (wi′) represents the expected value conditional on receiv-

ing the offer from employer i.11. Probability pi(0) and pi(k|n) correspond to the case of no

offer and n offers arrived. The latter specifies a set of employers from whom the worker has

received offers, denoted as Ci. Then, for n received offers, the total possible combinations of

these offers is given by
(N−1

n

)
= (N−1)!

(N−1−n)!n! , as the maximum number of offers that can arrive

is N−1. k is the index denoting one of the combinations. The conditional probabilities are

pi(0) =
j∈Nv

∏
j 6=i
{1−δi j}=

j∈Nv

∏
j 6=i
{1− [ai jδH +(1−ai j)δL]}, (9)

pi(k|n) =
(

∏
z∈Ci

δiz

)
·
(

∏
z′∈Nv\(Ci∪i)

(1−δiz′)

)
, (10)

To explore the properties of node values, we introduce a 2N×1 vector with node values as

elements, denoted as Ξ = [Ω1, ...,ΩN ,Λ1, ...,ΛN ]
′, and a nonlinear function G(·) that satisfies

the right sides of equations 7 and 8. Our investigation is centered around the existence of a

fixed point Ξ for the function G(·) such that:

Ξ = G(Ξ). (11)
11Without loosing generality, we let w = 0.
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Proposition 1 below establishes the existence of a fixed point for 11, ensuring that within

any directed or undirected network structure, each employer corresponds to a unique pair of

node values denoted by (Ω,Λ).

Proposition 1. Node values for each employer uniquely exist within any network structure.

Proof. The idea of proving is to construct a Jacobian matrix of G(·). The probability coef-

ficients and partial derivatives (g′1 and g′2) will be proved to be strictly less than one. So the

Jacobian matrix is strictly less than one under some natural matrix norm. The contraction

mapping will guarantee the unique existence of the fixed point in equation 11.

There are 2N−1 maximizing functions on the right side of equation 7 and 8. Take one

of the combinations as an example: max(~v) = max{v0,v1, ...,vn} denotes the case where n

offers arrive and the worker has to choose the best one. v0 = V̄i is the reservation value of

the worker from employer i, v j( j 6= i) is the value of offers from other employers, such that

v j =
1+β (1−d)ψ

1−β (1−d)(1−ψ)E(w) + g(Ω j,Λ j), where g(Ω j,Λ j) is an increasing and convex function

defined in the proof of Proposition 3.

Define a ‘softmax’ function: µα(~v) = (vα
0 + vα

1 + · · ·+ vα
n )

1/α . By Hölder’s inequality,

max(~v)≤ (vα
0 + vα

1 + · · ·+ vα
n )

1/α ≤ (n+1)1/α max(~v)≤ N1/α max(~v) (12)

hence, the softmax function µα(~v) converges to max(~v) when α −→ ∞.

Construct JG(x) as the Jacobian matrix of first partial derivatives of the function G(x),

based on the softman function with large α . Using the equation (20) and (22) in the proof of

Proposition 3, we can derive the diagonal elements of row i in JG(V̂ ), which is the first partial

derivative of Vi:

β (1−d)pi(0)+β (1−d)
N−1

∑
n=1

Cn
N−1

∑
j=1

ps( j|n)
( vα

0
vα

0 + vα
1 + · · ·+ vα

n

)α−1
α

< β (1−d)
[

pi(0)+
N−1

∑
n=1

Cn
N−1

∑
j=1

pi( j|n)
]
= β (1−d)< 1

(13)

and the element of column j ( j ≤ N) and row i is:

β (1−d)g′1(Ω j,Λ j)
N−1

∑
n=1

Cn
N−1

∑
j=1

pi( j|n)
( vα

j

vα
0 + vα

1 + · · ·+ vα
n

)α−1
α

< β (1−d)
N−1

∑
n=1

Cn
N−1

∑
j=1

pi( j|n)< 1,

(14)
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The first inequality uses g′1(Ω j,Λ j)< 1 as shown in the proof of Proposition 3. The results are

the same if N < j ≤ 2N.

Hence, all elements of JG(V̂ ) are strictly less than 1. We can find a small positive real

number ε and a constant ρ = 1− ε such that

‖ JG(V̂ ) ‖∞< ρ < 1 (15)

where we choose the infinite matrix norm (L∞ norm). Therefore, G(V̂ ) is a contraction mapping

and has a unique fixed point V̂ ∗. We can compute G(V̂ ∗) by iterating the G function because

|V̂ (t+2)−V̂ (t+1)|= |G(V̂ (t+1))−G(V̂ (t))| ≈ |JG(V̂ )(V̂ (t+1)−V̂ (t))| ≤ ρ|V̂ (t+1)−V̂ (t)|

�

Next, we discuss 3 determinants of node value: offer arrival rate, wage distribution, and

employer network position. First, an increase in the offer arrival rate directly elevates the node

values. This assertion stems from the construction of the node values in equation 7 and 8. To

illustrate, consider the distinction between Ωi and Λi, which hinges solely on the conditional

probabilities pi and p′i. The relation pi(·|n) ≥ p′i(·|n) suggests that Ωi ≥ Λi, with equality

manifesting exclusively when m= 1. This delineation underscores the pivotal role of the arrival

rate in enhancing node value, as it reflects an elevated likelihood of favorable outcomes.

Second, we explore the impact of wage distribution F(w) on the value of nodes. This

relationship is formalized in Proposition 2, as follows:

Proposition 2. The first order stochastic dominance (FOSD) of F(w) increases the node values.

Mean-preserving spreads in risk of F(w) increase node values.

Proof. The proof makes use of weakly monotonicity of V (i,wi) on wi. If F1 first-order stochas-

tically dominates F2, F1(x)< F2(x),∀x. And since V (s′,ws′) is weakly increasing convex func-

tion in terms of ws′ ,∫ B

0
[ws′+β (1−d)V (s′,ws′)]dF1(ws′) = E(w)+β (1−d)

∫ B

0
V (s′,ws′)dF1(ws′)

> E(w)+β (1−d)
∫ B

0
V (s′,ws′)dF2(ws′) =

∫ B

0
[ws′+β (1−d)V (s′,ws′)]dF2(ws′)

Let F2 be the mean-preserving spread of F1. Then

x∼ F1, y∼ F2, y = x+ ε, E(ε|x) = 0

13



By Jensen’s inequality,∫ B

0
[ws′+β (1−d)V (s′,ws′)]dF1(ws′) = E(w)+β (1−d)

∫ B

0
V (s′,ws′)dF1(ws′)

< E(w)+β (1−d)
∫ B

0
V (s′,ws′)dF2(ws′) =

∫ B

0
[ws′+β (1−d)V (s′,ws′)]dF2(ws′)

�

Proposition 2 highlights that the network position of an employer is essentially an option

asset for workers. FOSD implies that an option offering universally higher (or at least not

lower) payoffs in such a risk-neutral world would indeed be valued more highly. Pricing theory

exhibits that the value of an option is an increasing function of the variance in the price of

the underlying asset. Proposition 2 is intuitive considering that workers have the prerogative

to accept the offers only from the right tail of the distribution. Under a mean-preserving in-

crease in risk, the higher incidence of better wage offers increases the value of holding out for

more opportunities through their network connections in subsequent periods, while the higher

incidence of very bad offers is not detrimental as the option will not be exercised anyway.12

Third, the network position of an employer determines its node value, drawing parallels

to the principle of centrality measures within network science. Centrality measures quantify

the relative importance of a node within a network through two primary dimensions: (i) nodes

with a higher degree of connections exhibit greater centrality; (ii) a node’s centrality is further

amplified by the high centrality of its connected nodes. In a similar vein, an employer’s node

value is augmented by an increase in connections, underscoring the pivotal role of network

ties in enhancing expected value. Moreover, node values of other employers in the network

influence each oter, as elucidated in Proposition 3.

Proposition 3. The node value of an employer is an increasing and convex function of it neigh-

boring node values.

Proof. The effect of neighboring nodes are captured in the term
∫ B

0 [w j+β (1−d)V ( j,w j)]dF(w j),

which can be written into 1+β (1−d)ψ
1−β (1−d)(1−ψ)E(w)+g(Ω j,Λ j), as shown below:

∫ B

0
[ws′+β (1−d)V (s′,ws′)]dF(ws′) =

∫ B

0
ws′dF(ws′)+β (1−d)

∫ B

0
V (s′,ws′)dF(ws′) (16)

12Ljungqvist and Sargent (2018) addresses this points when introducing McCall’s model in page 166.
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∫ B

0
V (s′,ws′)dF(ws′) =

∫
ηs′

0
Ωs′dF(ws′)+

∫ B

ηs′

ws′+β (1−d)ψΛs′

1−β (1−d)(1−ψ)
dF(ws′)

= Ωs′F(ηs′)+
β (1−d)ψΛs′

1−β (1−d)(1−ψ)
[1−F(ηs′)]+

∫ B

ηs′

ws′

1−β (1−d)(1−ψ)
dF(ws′)

(17)

Let Φ(Ωs′,Λs′) = Ωs′F(ηs′)+
β (1−d)ψΛs′

1−β (1−d)(1−ψ) [1−F(ηs′)],

Replace eq.(17) into eq.(16),∫ B

0
[ws′+β (1−d)V (s′,ws′)]dF(ws′)

=
∫ B

0
ws′dF(ws′)+

β (1−d)
1−β (1−d)(1−ψ)

∫ B

ηs′
ws′dF(ws′)+β (1−d)Φ(Ωs′ ,Λs′)

=
1+β (1−d)ψ

1−β (1−d)(1−ψ)
E(w)+g(Ωs′,Λs′)

(18)

where

g(Ω,Λ) = β (1−d)Φ(Ω,Λ)− β (1−d)
1−β (1−d)(1−ψ)

∫
η

0
wdF(w) (19)

η = [1−β (1−d)(1−ψ)]Ω−β (1−d)ψΛ

and E(w) =
∫ B

0 ws′dF(ws′),

0 <
∂g(Ω,Λ)

∂Ω
= β (1−d)F(η)< 1 (20)

∂ 2g(Ω,Λ)

∂Ω2 = β (1−d)[1−β (1−d)(1−ψ)] f (η)> 0 (21)

0 <
∂g(Ω,Λ)

∂Λ
=

β 2(1−d)2ψ[1−F(η)])

1−β (1−d)(1−ψ)
< 1 (22)

∂ 2g(Ω,Λ)

∂Λ2 =
β 3(1−d)3ψ2 f (η))

1−β (1−d)(1−ψ)
> 0 (23)

∂ 2g(Ω,Λ)

∂Λ∂Ω
=−β

2(1−d)2
ψ f (η)< 0 (24)

Hence, the function g(Ω,Λ) is increasing and convex with respective to Ω and Λ. �

Proposition 3 illustrates that, as demonstrated numerically in the following subsection,

a node connecting to fewer nodes with high node values may exhibit a greater node value

compared to a node connecting to many low node values. This characteristic is pivotal for

understanding the profound influences exerted by network positions and structures. One worth

noting is that, unlike centrality measures such as eigenvector centrality and PageRank, the

15



(a) (b) (c)

(d) (e) (f)

Figure 3: Network examples

valuation of a node within this framework is influenced by the values of neighboring nodes in

a nonlinear manner. 13

2.5 Numerical Examples

This section presents illustrative examples to elucidate the properties discussed previously,

followed by a career trajectory for a typical worker within an employer network structure, and

a discussion on computational challenges encountered as the network scales.

2.5.1 Examples

To demonstrate the implications of Proposition 3, we reference the employer network

structures depicted in Figure 3, analyzing their influence on node values and threshold wages.

Specific parameters are used for the illustration: the wage distribution follows a uniform

pattern, w∼U(0,B) with B = 100; the discount factor multiplied by mortality risk is computed

as β (1− d) = 0.98 · 0.95 = 0.931; the involuntary separation rate stands at ψ = 0.5; arrival

13The concept of nonlinear centrality has previously been explored within the realm of network science, as

evidenced by research conducted by Tudisco and Higham (2019) and Arrigo and Tudisco (2019).
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rates are differentiated as δH = 0.9, δL = 0.1; network memory strength is m = 0.5; and unem-

ployment compensation γ = 0.15E(w) = 7.5. Labor force is stable with the same mortality and

entering rates The networks are undirected.

Table 1 showcases how employer network positions directly correlate with node values.

For instance, node 2, being the most isolated, registers the lowest Λ and Ω values. Nodes

1 and 3, due to their symmetrical positioning, share identical node values. Despite node 4’s

connectivity to two neighbors (nodes 2 and 5), its node value is adversely impacted by the low

value of node 2, underscoring the principle that an isolated neighbor can diminish a node’s

value. In contrast, regular network structures (as depicted in graphs (d)-(f)) exhibit uniform

node values due to their symmetrical configurations.

While the concept of weak node values effectively ranks nodes according to the rela-

tive significance of their network positions, the interpretation of strong node values is not as

straightforward. For instance, in graph (a) of Figure 3, node 5’s network central position grants

it the highest Λ, yet its Ω does not lead. This anomaly is attributed to the influence of neigh-

boring nodes on the valuation function g(Ω,Λ), whose second mixed partial derivative with

respect to Ω and Λ is negative.

Moreover, central nodes typically exhibit lower threshold wages, suggesting a propensity

for workers to gravitate towards central employers. However, the hierarchy of threshold wages

does not consistently mirror the ranking of node values. For instance, in graph (a), the most

isolated node (node 2) commands the highest threshold wage. Conversely, the threshold wage

for node 4, despite being the second most isolated, is lower than those associated with nodes

1 and 3. This divergence underscores the fact that threshold wages are influenced by a con-

stellation of factors, including the discounting rate, separation rate, and both the strong and

weak node values. Furthermore, the network memory strength, denoted as m, plays a critical

role in modulating the threshold wage by influencing node values. As depicted in Figure 4,

the threshold wage exhibits a decline in response to an increase in the separation rate, yet the

relative wage hierarchy among nodes may vary with different m values.

2.5.2 Career Path Illustration

Figure 5 outlines the career path of a typical worker within the network structure of ex-

ample (a). Initially receiving unemployment compensation in period 2, the worker secures

employment with employer 5. The wage makes her a settler in employer 5, but she is invol-
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Node

Network 1 2 3 4 5 6

(a)

Ω 891.602 883.869 891.602 889.267 891.369

Λ 876.818 858.696 876.818 874.181 883.246

η 68.402 72.705 68.402 68.382 65.286

(b)

Ω 880.473 873.275 880.473 878.322 880.158 808.285

Λ 865.812 849.404 865.812 863.386 871.791 808.285

η 67.577 71.368 67.577 67.557 64.626 55.772

(c)

Ω 896.592 890.306 896.157 895.196 896.218

Λ 888.511 864.629 881.774 887.141 888.401

η 65.627 73.384 68.530 65.518 65.478

(d)

Ω 504.846 504.846 504.846 504.846 504.846

Λ 504.846 504.846 504.846 504.846 504.846

η 34.834 34.834 34.834 34.834 34.834

(e)

Ω 556.897 556.897 556.897 556.897 556.897 556.897

Λ 556.897 556.897 556.897 556.897 556.897 556.897

η 38.426 38.426 38.426 38.426 38.426 38.426

(f)

Ω 903.497 903.497 903.497 903.497 903.497

Λ 899.556 899.556 899.556 899.556 899.556

η 64.176 64.176 64.176 64.176 64.176

(g)

Ω 903.575 903.575 903.575 903.575 903.575 903.575

Λ 901.721 901.721 901.721 901.721 901.721 901.721

η 63.210 63.210 63.210 63.210 63.210 63.210

* Network (g), not in Figure 3, is a complete network with 6 nodes.

Table 1: Node values and threshold wage for each node within different network structure
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(a) m = 0.1 (b) m = 0.5 (c) m = 0.9

Figure 4: Threshold wage η declines with higher separation rate ψ

Figure 5: Wage dynamics of a typical worker in network (a). All parameters are the same.

untarily separated in period 3. Using the network connection of employer 5, she becomes a

settler in employer 4 where she is involuntarily separated again in period 4. Then, she becomes

a mover working for employer 2 in period 5. She quits her job 1 period later and move back

to employer 4. Note that, except the separation at period 11, all transitions are job-to-job from

the data with no unemployment spell between them. The wage dynamics reflect her decisions

to maximize the present value of lifetime income before exiting labor market in period 29.

Through this narrative, we observe how different positions within the employer network facili-

tate a sequence of job changes, each decision meticulously aligned with the goal of maximizing

lifetime income.

2.5.3 Computation Problem

Computing node values in the above examples is facilitated by a fixed-point iteration algo-

rithm. However, this approach encounters significant challenges as network size expands, lead-
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ing to the ‘curse of dimensionality’. When δL > 0, the total possible combinations of arrived

offers can be represented by ∑
N−1
n=1

(N−1
n

)
= 2N−1− 1. For instance, in a network comprising

20 nodes, this formula yields 20×219(> 107) combinations, necessitating the computation of

more than ten million probability coefficients prior to the iterations.

To alleviate computational demands, 3 additional assumptions can be introduced:

Network Scale Reduction: Concentrating on a more narrowly defined network can consider-

ably diminish complexity. By examining networks at the industry level as opposed to the firm

level, or prioritizing the firm level over the establishment level—given that a single firm may

comprise multiple establishments—the number of nodes within the network is effectively de-

creased. However, this approach requires that the empirical relevance of the analysis is not

unduly compromised.

Simplification of Arrival Rates: Adjusting arrival rates can further simplify calculations. Specif-

ically, setting δL = 0 eliminates the possibility of receiving offers from unlinked employers,

thereby capping the maximum number of offers a worker might receive to the number of their

employer’s connections. This reflects the practical reality that workers are unlikely to receive

job offers from all employers across disparate geographical and industrial contexts.

Exploiting Symmetric Network Topologies: Utilizing networks with symmetric topologies, such

as empty or complete networks (as illustrated in panels (d)-(f) of Figure 3), or the peripheral

nodes in a star network, can dramatically reduce computational dimensions. In such cases,

all nodes share identical network positions and, consequently, identical node values, allowing

for potential analytical solutions to be derived. This case also highlights the impact of high

unemployment compensation: if it is set at a level that disincentivizes work, all employers

become symmetrically irrelevant to workers, leading to a scenario where both strong and weak

node values for each employer converge to Ωi = Λi =
γ

1−β (1−d)(∀i ∈ Nv).

3 Equilibrium and Network Structure Transition

In this section, we explore the model’s equilibrium and demonstrate numerically how the

economy transitions following a network structural shock. Our simulations utilize the parame-

ters set forth in previous examples. We focus on the decision-making process of workers, who

are influenced by the node values and threshold wages delineated in Table 1.
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3.1 Settler Ratio

Lemma 1 The settlers ratio si in the employer i at steady state is

si =
1−Fi(ηi)

1− xFi(ηi)
∈ (0,1), (25)

where x = (1−d)(1−ψ) is survival rate, and Fi(z) = Pr(w < z|i) is the inflow wage distribu-

tion for the unemployed workers who accept the offer from the employer i.

Proof. Define that the number of workers in employer i at the beginning of period t as Wt(i); the

number of workers flowing into employer i at period t as W in
t (i). At steady state, Wt(i) =W (i),

W in
t (i) =W in(i), so

W in(i) = (1− xsi)W (i). (26)

Meanwhile, the ratio of settlers and movers is also stable, i.e.

W (i)xsi +W in(i)Pr(w > ηi|i)
W in(i)Pr(w < ηi|i)

=
si

1− si
, (27)

Together solve the settler ratio. �

The settler ratio fundamentally depends on the network position of employer i, as influ-

enced by Fi(z) and ηi. However, a direct comparison of settler ratios between employers is not

straightforward. For instance, employer i may not necessarily have a higher settler ratio than

employer j, even if it occupies a more central position within the network. This is because while

Fi may be first-order stochastically dominated by Fj, differences in threshold wages (ηi < η j)

can result in varied settler ratios for more central nodes. 14

3.2 Labor Flows and Employment

This analysis divides labor flow into two main components: labor outflow and inflow

from each employer. Labor outflow of one employer includes both voluntary and involuntary

separations. Conversely, labor inflow to an employer consists of inexperienced workers and

movers from other employers. For an employer i, this equilibrium condition implies that the

inflow of workers, W in(i), matches the outflow, and can be expressed as:

W in(i) = I ·P0i +(1−d)∑
j 6=i

[
(1− s j)PΩ

ji +ψs jPΛ
ji

]
W ( j) (28)

14See Appendix B illustrating with the examples in the previous section.
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where I is the steady-state number of inexperienced workers at steady states, which is

I =
b(1−δL)

NL
1− (1−d)(1−δL)N , (29)

where b stand for entry rate in labor force, L is the initial population size. 15 This suggests that

I is independent of the network’s internal connections, highlighting its role in providing a fresh

labor force to all employers.

The variables P0i, PΩ
ji , and PΛ

ji represent the transition probabilities for inexperienced work-

ers moving to employer i, and for voluntarily and involuntarily unemployed workers from em-

ployer i accepting offers from employer i, respectively. These probabilities are determined

through a series of equations integrating the distribution of wage offers and the decision-making

process of workers based on their reservation values and competing offers. Formally,

P0i = δL

{N−1

∑
n=0

(N−1
n )

∑
k=1

p1(k | n)
∫
· · ·
∫

D1

f (wi1, · · · ,win,wi)dwi1 · · ·dwi

}
, (30)

PΩ
ji = δ ji

{N−1

∑
n=0

(N−1
n )

∑
k=1

p2(k | n)
∫
· · ·
∫

D2

f (wi1, · · · ,win,wi)dwi1 · · ·dwi

}
, (31)

PΛ
ji = δ

′
ji

{N−1

∑
n=0

(N−1
n )

∑
k=1

p3(k | n)
∫
· · ·
∫

D3

f (wi1, · · · ,win,wi)dwi1 · · ·dwi

}
, (32)

where pz(k|n) (z = 1,2,3) is the probability of the kth combination conditional on n offers

arrived besides the offer from employer i, f (wi1, · · · ,win,wi) = f (wi1) · · · f (win) f (wi) is the

joint probability density of these n+1 offers, and Dz (z = 1,2,3) is the domain that drives the

15Let It be the number of inexperienced workers, and Lt be the size of the population, at period t. For each

period, inexperienced workers include newly born workers and inexperienced workers from the last period. The

law of motion, therefore, is It+1 = (1− δL)
N [b · Lt + (1− d)It ], where (1− δL)

N is the probability of no offer

arriving. In the steady state when b = d, Lt = L and It+1 = It = I. So the number of inexperienced workers in the

steady state depends on the death rate, the birth rate, the population size, the lowest arrival rate, and the number

of employers in the network, but not on the edges inside networks. In the case of b > d or b < d, the number of

inexperienced workers fluctuates in a similar way to the overall population.
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unemployed worker to move to the employer i, i.e.

D1 =

{
(wi1, · · · ,win,wi)|V̄0 < wi +β (1−d)V (i,wi) &

max{wi1 +β (1−d)V (i1,wi1), · · · ,win +β (1−d)V (in,win)}< wi +β (1−d)V (i,wi)

}
D2 =

{
(wi1, · · · ,win,wi)|V̄ Ω

j < wi +β (1−d)V (i,wi) &

max{wi1 +β (1−d)V (i1,wi1), · · · ,win +β (1−d)V (in,win,)}< wi +β (1−d)V (i,wi)

}
D3 =

{
(wi1, · · · ,win,wi)|V̄ Λ

j < wi +β (1−d)V (i,wi) &

max{wi1 +β (1−d)V (i1,wi1), · · · ,win +β (1−d)V (in,win)}< wi +β (1−d)V (i,wi)

}
where in indicates one of the n arrived offers dominated by the offer from employer i. The

value of employer i’s offer must be larger than both the reservation value and the values of

other competing offers.

The equilibrium employment level for each employer, Ŵ = [W ∗(1), . . . ,W ∗(N)]′, can be

obtained by plugging equation 30-32 into the equation 28, together with the equation 26. The

equilibrium is achieved when Ŵ satisfies the fixed point in the system of equations:

[1− xs1,1− xs2, · · · ,1− xsN ]Ŵ ∗ =


(1− xs1)W ∗(1)

(1− xs2)W ∗(2)
...

(1− xsN)W ∗(N)

= H(Ŵ ∗) (33)

where function H satisfies equation 28 for each i ∈ Nv. It is easy to show the existence and

uniqueness of the solution to this system of linear functions. This model underscores how cen-

tral nodes within a network are poised to attract more employees in the long run, as illustrated

in panel (b) of Figure 9 and further supported by Table 2 in Appendix A.

3.3 Transitions after network structural shock

This section explores the dynamics of employment and settler ratios in response to net-

work structural shocks. We conduct simulations under two distinct scenarios to understand the

changes in network configurations and their implications on employment metrics. The initial

economy includes 2000 inexperienced workers and unfolds over 100 periods. At time t = 51,

a shock changes the network structure.
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(a) (b)

(c) (d)

Figure 6: Transitions from network (a) to (b)
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(a) (b)

(c) (d)

Figure 7: Transitions from network (a) to (c)
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First, the shock introduces a new employer in the network. This scenario is depicted

through the transition from network configuration (a) to (b) as illustrated in Figure 3, with the

specific transition showcased in Figure 6. The shock alters the node values across the network

and prompts workers to reassess their career decisions. This reassessment results in noticeable

fluctuations in the ratios of settlers to movers, alongside changes in the total numbers of settlers,

movers, and employed individuals. The emergence of a new, albeit less appealing, employer

still attracts a flow of workers. Over time, the initial adverse impacts of the shock on employers’

workforce sizes diminish. However, certain nodes, specifically nodes 1 and 5, fail to recover to

their pre-shock employment levels.

The second scenario investigates the effects of adding a new edge to the network, shown

from example (a) to (c) as shown in Figure 3, with the transition detailed in Figure 7. The

network structural shock results in an increasing number of settlers in node 1 and 4. This is

because (i) new edge is constructed between them and significantly makes them more attractive

to workers; (ii) the threshold wages of both employers decrease after the shock, and thus result

to higher(lower) settler(mover) ratio in steady state. Moreover, the introduction of the new edge

disrupts the prevailing network hierarchy, particularly diminishing the advantage of node 5’s

network position by enlarging the node degree of nodes 1 and 4.

4 Discussion of The Network Effect

This section discusses the influence of employer network structures on wage distribution

and labor mobility. The employer network structure — including the number of nodes (em-

ployers), the edges connecting them, and the overall topology — plays a pivotal role in shaping

economic outcomes in labor market. Central to this analysis is the premise that the node val-

ues navigate workers’ decisions. Thus, we firstly scrutinize the effect of changes in network

structure — be it through alterations in the number of nodes, the configuration of edges, or the

network’s topology — on the value attributed to each node. Then, we relate the node values to

key labor market elements: wage distribution and labor mobility.

4.1 Network Effect on Node Values

Lemma 2: The node values in a network weakly increase with the addition of edges.

Proof. The lemma is substantiated through two primary arguments: (1) under certain con-
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ditions, the addition of an edge does not alter node values; (2) barring these conditions, the

introduction of a new edge results in an increase in node values.

Invariance of Node Values: node values may be unchanged in the following 3 cases. First, when

δL = 0, an employee from an isolated employer does not receive alternate job offers upon res-

ignation, leaving the isolated employer’s node value unaffected by network changes. Second,

High Unemployment Compensation: An exceedingly high unemployment compensation di-

minishes work incentives. In scenarios where all workers opt for unemployment, the employer

network’s structure becomes irrelevant. Third, as (δH − δL)→ 0, the distinction between pre-

and post-edge addition vanishes, degenerating the network to empty.

Increase in Node Values: If all other conditions are well defined, the new edge enhances node

values. Let’s consider a new edge connecting node i and node j. This edge, by definition,

boosts the node value of employer i, employer j, or both, depending on whether the network is

directed or undirected. Following Proposition 3, this increment extends to adjacent nodes and

their neighbors, propagating throughout the network. �

The intuition is that an enriched network offers workers increased future prospects, raising

their expected values. Consequently, Lemma 2 suggests a universal benefit for all employers in

the network, including those not directly connected. When δL > 0, even the node value of an

isolated employer would increase. Comparative analysis of network configurations in Figure 3

and Table 1 illustrates that an additional edge (e.g., between nodes 1 and 4) universally elevates

node values. Hence, within a given node number, a complete network boasts the highest node

values, whereas an empty network has the lowest.

The evolution of examples in Figure 3 underscores this principle. Starting with an empty

five-node network (graph d), which exhibits the lowest node values, the introduction of edges or

nodes incrementally increases these values, as demonstrated in networks (a) and (e). Network

(b) emerges from expanding network (a) with an additional node or augmenting network (e)

with new edges, situating its node values above those in network (e) yet below those in network

(a). The progression from example (a) to (c) culminates in the highest node values within the

completely interconnected network (f).

The effect of increasing the node number on node values is multifaceted. While adding a

node to an empty network (as shown in graphs (d) and (e)) universally boosts node values due

to symmetric opportunities and wage options, the impact varies in networks with differentiated
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employer networks, such as in examples (a) and (b). Here, a new node may dilute the value of

existing nodes by rendering the network sparser.

4.2 Network Effect on Wages

In this section, we examine the impact of network structure on wage distribution, focusing

on two moments: wage level and wage variance. The influence of employer network structure

on wage levels is nuanced due to its effect on node values, which determine threshold wages

and the distribution of wages among employers.

Wage Level

The overall wage level in an economy is a weighted average of wages within individual em-

ployers, as dictated by node values. The expected wage at the onset of each period is

Ẽ(w) =
i∈Nv

∑
i

W (i)
∑iW (i)︸ ︷︷ ︸

αi

Ẽi(w). (34)

where αi denotes the employment share of employer i in the economy, and Ẽi(w) is the average

wage level within employer i such that16

Ẽi(w) =
{

xsi +(1− xsi)[1−Fi(ηi)]
}
Ei(w|w > ηi)+(1− xsi)Fi(ηi)Ei(w|w≤ ηi). (35)

To explore the effects on wage levels, consider the impact of introducing a new edge within

the network. The new edge alters node value rankings when γ is small, but does not affect

overall employment as it does not create additional job offers for unemployed workers. Denote

Ẽ′(w) as the average observed wage after adding a new edge, αi and α ′i are the employment

share before and after adding a new edge, then the change of the observed wage level is

Ẽ′(w)− Ẽ(w) =
i≤N

∑
i
(α ′i −α)Ẽi(w)+

i≤N

∑
i

α
′
i εi.

Here, εi = Ẽ′i(w)− Ẽi(w) denotes the change in wage level within employer i due to the new

edge. The overall impact on the wage level is uncertain, as it depends on the specific alterations

in employment shares and wage levels within each employer.

Introducing a new node to the network can also ambiguously affect wage levels by at-

tracting inexperienced workers, thereby expanding employment. This change impacts the dis-

tribution of employment across the network, albeit without altering the node value rankings.
16Ei(w|w≤ ηi) and Ei(w|w > ηi) are expectations of Fi(w|w≤ ηi) and Fi(w|w > ηi), respectively.
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Formally, when we add the (N +1)th node, the change of average wage level is

Ẽ′(w)− Ẽ(w) =
i≤N

∑
i
(α ′i −αi)Ẽi(w)+

i≤N

∑
i

α
′
i εi +α

′
N+1Ẽ′N+1(w)

where (α ′i − αi) < 0 for ∀i < N, so the first term on the right is negative, the third term,

α ′N+1Ẽ′N+1(w), is positive, and the second is undecided, so is the summation.

Wage Variance

The impact of network structure on wage variance involves both intra-employer (within) and

inter-employer (between) variances. The intra-employer variance is calculated by Ṽari(w) =

Ẽi(w2)− Ẽ2
i (w) where Ẽi(w2) can be obtained similarly as Ẽi(w). Although Poggi and Natale

(2020) observes that within-firm wage dispersion increases with employer centrality in the

network, as measured by closeness centrality, it is not clear in our model. This ambiguity arises

because employees’ quitting decisions hinge on a threshold wage that is itself influenced by the

employer’s network position.

The between-employer variance, on the other hand, is related to the variance of node

values, which is determined by the symmetry of the network structure. A new node in an

empty network will only increase other node values, and have no effect on their variance. In a

nonempty regular network, all nodes are symmetric in network, so the variance of node value

is zero. Then adding a new isolated node will increase the variance. If the network is irregular

like example (a) or (b), the node values will have different rankings and the change of variance

can be complicated. To get a sense of the complicated effect of network topology, consider

two extreme examples: an empty network and a complete network. Despite both structures

having no variance of node values, there iss no ‘Laffer curve’ or any particular relationship

between the variance of node value and the number of edges. As shown in Figure 8, two

networks with 6 nodes and 6 edges have distinct topological structures. The variance of node

values is zero in the regular network on the right, while the variance is positive on the left. This

complexity highlights the intricate relationship between network topology and wage dynamics,

necessitating a detailed examination of network structure and their economic implications.17

17The notion of network symmetry is captured by the mathematical concept of graph automorphism. A graph

automorphism σ is then a permutation, or relabeling, of the vertices v 7→ σ(v) such that (σ(i),σ( j)) ∈ E is an

edge only if (i, j) ∈ E for all i, j. More symmetric nodes result in a higher redundancy ratio of the network.
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Figure 8: Two network structures with 6 nodes and 6 edges

4.3 Network effect on Labor Mobility

We discuss the influence of network structure on labor mobility from two primary aspects:

inflow and outflow of labor.

Labor inflow of employers

First, central nodes within the network are associated with higher node values. As mentioned

before, workers make decisions by comparing wage in the offer and the prospect of the offer

that is related to employer’s network position. This, in turn, enhances the attractiveness of job

offers from these employers to unemployed workers. Second, a high node value often results

from greater degree, or being linked to other employers of high node values. Consequently,

these characteristics increase the pool of workers who may receive job offers from these central

nodes. Together, these elements synergistically elevate the labor inflow towards employers with

high node values.

Labor outflow of employers

The network structure also plays a critical role in shaping labor outflow, primarily through its

impact on the threshold wage. The threshold wage, influenced by the node values, indirectly

determines the proportion of movers and settlers with an employer. A critical factor here is the

employer’s position within the network, which, alongside a constant separation rate, dictates

the number of settlers and, consequently, the volume of involuntarily separated workers.

An additional consideration is the movement of inexperienced workers, which contrasts

with the established flows for more experienced employees. The mobility of these workers

is influenced solely by the number of nodes within the network, as indicated by Equation 29.

The rationale is that inexperienced workers are presumed to lack direct network connections
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with employers, rendering the network topology irrelevant to their job prospects as long as

unemployment compensation remains low.

A noteworthy implication of the model is the behavior of separated workers from central

nodes. These individuals tend to exhibit extended job search durations, as they are endowed

with more opportunities by employer’s network position. Specifically, for a worker previously

employed by a central node j, her probability of accepting an offer in the next period is gov-

erned by the equation:

Pj = ∑
s 6= j

δ jsProb(ws +β (1−d)V (s,ws)> V̄j),

where V̄j is the reservation value from employer j as shown in equation 6. Consequently,

the probability of a worker searching for T periods is defined as Pj(T ) = (1−Pj)
T−1Pj. This

model illustrates how workers disassociated from central nodes utilize their network connec-

tions to adopt a more discerning approach in their job search, potentially influencing overall

labor mobility patterns.

5 Conclusion

This paper constructs a simple search model with employer network that brings heteroge-

neous working prospects for workers contingent on employer’s particular position in network.

The model reveals that the network structure inherently shapes dynamics in labor market.

Our model emphasizes that the employer network position could be important to workers

in providing long-term prospects. Central employers are the ones with more connections or

neighbors that are also central. Our model suggests that a worker may move to a new employer

with a wage cut because the employer could provide more opportunities of moving to another

employer with a higher wage.

While the model assumes that employer networks structure os exogenously given, the gen-

esis of these networks remains an open question. The literature suggests that social networks

among coworkers and the production networks of employers could both play significant roles

in expanding workers’ opportunities for upward mobility. This confluence of social and pro-

duction networks likely shapes the labor market landscape and offers a rich avenue for future

research.
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Node

Network 1 2 3 4 5 6

(a)

Settlers 109.4 47.24 106.46 91.46 153.44

Movers 112.4 69.3 114.24 114.74 155.88

Employees 221.8 116.54 220.7 206.2 309.32

Settler ratio 0.494 0.406 0.482 0.443 0.496

(b)

Settlers 102.88 45.8 99.98 89.86 142.22 15.68

Movers 101.22 62.92 100.54 102.88 136.4 5.36

Employees 204.1 108.72 200.52 192.74 278.62 21.04

Settler ratio 0.504 0.422 0.499 0.466 0.510 0.744

(c)

Settlers 158 49.94 100.5 138.62 153.52

Movers 129.7 59.72 99.18 132.52 128.84

Employees 287.7 109.66 199.68 271.14 282.36

Settler ratio 0.552 0.442 0.502 0.507 0.549

Table 2: 50-Period Averages

Appendices

A 50-Period Averages

Table 2 presents the simulated average number of settlers, movers, employees, and settler

ratio, for each node from time 50 to 99.

B Relationship between Node Values and Settler Ratios

Figure 9 panel (a) illustrates the relationship between node values and settler ratios across

employers in networks (a), (b), and (c). In panel (a) and (b), x-axes are (weak) node values,

while y-axes represent average settler ratio and average number of employees, respectively.

The average numbers cover the last 50 periods. Dots in orange, blue, and red, are for example

(a), (b), and (c), respectively. In panel (a), the regressing line is Y = 2.0845− 0.001824X ,

with p = 0.05911. After excluding the new node from the network (b), the regression line
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(a) Settler ratio and node values (b) Number of employees and node values

Figure 9

becomes Y = −1.7771 + 0.002589X , with p = .00086; In panel (b), the regressing line is

Y =−2396.2234+2.9725X , and Y =−2870.5042+3.5145X after excluding the isolated node

6, with p = 0.00012 and p = .004, respectively. The results have little difference with the

strong node value (Ω). Notably, central nodes exhibit higher settler ratios upon excluding the

new node from example (b), though the justification for such exclusion remains debatable.
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